
Towards Answering “Am I on the Right Track?”

Automatically using Program Synthesis

Molly Q Feldman

Cornell University

USA

molly@cs.cornell.edu

Yiting Wang

Cornell University

USA

William E. Byrd

University of Alabama at Birmingham

USA

François Guimbretière

Cornell University

USA

Erik Andersen

Cornell University

USA

Abstract

Students learning to program often need help completing

assignments and understanding why their code does not

work as they expect it to. One common place where they

seek such help is at teaching assistant office hours. We found

that teaching assistants in introductory programming (CS1)

courses frequently answer some variant of the question “Am

I on the Right Track?”. The goal of this work is to develop an

automated tool that provides similar feedback for students

in real-time from within an IDE as they are writing their

program. Existing automated tools lack the generality that

we seek, often assuming a single approach to a problem, us-

ing hand-coded error models, or applying sample fixes from

other students. In this paper, we explore the use of program

synthesis to provide less constrained automated answers to

“Am I on the Right Track” (AIORT) questions. We describe

an observational study of TA-student interactions that sup-

ports targeting AIORT questions, as well as the development

of and design considerations behind a prototype integrated

development environment (IDE). The IDE uses an existing

program synthesis engine to determine if a student is on the

right track and we present pilot user studies of its use.

CCS Concepts • Applied computing → Education; •

Software and its engineering→ Automatic programming.

Keywords Computer science education, program synthesis,

user interfaces

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SPLASH-E ’19, October 25, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6989-3/19/10. . . $15.00

https://doi.org/10.1145/3358711.3361626

ACM Reference Format:

Molly Q Feldman, Yiting Wang, William E. Byrd, François Guim-

bretière, and Erik Andersen. 2019. Towards Answering “Am I on the

Right Track?” Automatically using Program Synthesis. In Proceed-
ings of the 2019 ACM SIGPLAN SPLASH-E Symposium (SPLASH-E
’19), October 25, 2019, Athens, Greece. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3358711.3361626

1 Introduction

Personalized feedback contributes significantly to the suc-

cess of learning experiences for novice programmers. To

obtain personalized feedback, novices seek out help from

numerous sources: peers, online references and, in the case

of university students, professors, teaching assistants (TAs),

or tutors. Yet the supply of help from these sources, who we

call “feedback providers,” frequently cannot keep up with the

demand. For example, there are over 5 million unanswered

questions on StackOverflow as of August 2019.
1
In traditional

education, hiring in CS departments cannot keep up with

skyrocketing enrollment.
2
In order to meet the demand for

personalized feedback, we need to look outside of typical

one-on-one help scenarios and towards new approaches.

Our vision is to provide personalized feedback automatically,

while maintaining the quality of the classic help experience.

Existing feedback technology generally falls into two cat-

egories: tools that augment existing feedback providers and

fully automated methods. Augmentation takes the form of

summarization tools that allow feedback providers to do their

job more efficiently or systems that facilitate peer grading

[28]. Recent work on providing feedback at scale considers

in-progress code review [31], visualizing code execution [26],

or facilitating one-to-many feedback sessions via an online

chat interface [21]. However, most of these tools address a

student’s need for feedback indirectly through a feedback

provider. They provide the ability to productively scale up

human work, but are limited by the number of peers or TAs

1
http://web.archive.org/web/20190828041932/https://stackoverflow.com/

unanswered

2
https://www.nytimes.com/2019/01/24/technology/computer-science-

courses-college.html

13

https://doi.org/10.1145/3358711.3361626
https://doi.org/10.1145/3358711.3361626
http://web.archive.org/web/20190828041932/https://stackoverflow.com/unanswered
http://web.archive.org/web/20190828041932/https://stackoverflow.com/unanswered
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html
https://www.nytimes.com/2019/01/24/technology/computer-science-courses-college.html

SPLASH-E ’19, October 25, 2019, Athens, Greece M. Q Feldman, Y. Wang, W. E. Byrd, F. Guimbretière & E. Andersen

Figure 1. Feedback flow for an ideal automated feedback tool.

First, the student sees the specification, then they can write

a partial solution, and finally ask for feedback. The feedback

can take many final forms, including YES/NO feedback and

providing a partial or full solution directly to the student.

available. In comparison, our approach looks at helping the

student directly.

In comparison to augmentation methods, automated tools

attempt to mimic human capabilities. Past work in this area

typically requires embedding some form of prior informa-

tion about how to provide feedback into the system. This

includes using data collected from previous or current stu-

dents [22, 33] or modeling candidate incorrect solutions via

an error model [35]. By using this information, these tools are

able to provide a wide variety of meaningful feedback auto-

matically to students. However, they cannot fully generalize

to never-before-seen student errors or, in some cases, new

assignments. We aim to limit the prior information needed

to the language, the program specification, and a set of rep-

resentative test cases. Succeeding at this approach would

mean we can build automated systems that require very little

human effort (no updates to data or error models) and scale

to many different learners and learning environments.

This work builds on three key principles, guided in part by

a study of TA-student interactions described in the first part

of this paper. First, feedback should be integrated into the

student’s programming process. Ideally, the student writes

their program, asks for feedback, and receives it, all in the

same environment. Second, feedback should be provided in

real-time, on request, and nearly instantaneously. The time

of day or number of students in a room should no longer

be a bottleneck. Finally, since there are many ways to solve

any given problem, the system should be general enough to

capture all solution strategies, rather than a single solution

process specified by a reference solution.

Based in part on our preliminary study, this work focuses

on a specific question: Can we use program synthesis to build

a tool that can answer “Am I On the Right Track” questions

and present the answer in a meaningful way to users? To

answer this overarching question, we focus on the interplay

between generating feedback and the user’s interaction with

the feedback tool. The type of interaction we envision is

shown in Fig. 1. Given a specification for an assignment,

students can write partial solutions for isThree. If they are

not confident in their progress, they can request feedback.

The tool will then provide feedback based on whether they

are on the right track towards a correct solution. Our TA

study suggests that this kind of feedback, which we call “Am

I on the Right Track?” (AIORT) feedback, is common in office

hours. Students can then revise their current solution or, if

they were on a correct solution path, continue programming.

A motivating objective of this work is to leverage existing

program synthesis infrastructure for the feedback domain.

We use a program synthesis engine to generate feedback

by synthesizing program fixes between the student’s cur-

rent implementation and a correct implementation, using

an adapted sketching approach. This means we can theoreti-

cally capture a wide range of solutions to a given problem,

rather than referencing known student errors. This general

approach can be real-time and scalable, as recent advances

in program synthesis make engine runs take only seconds.

We show that it is possible to use an “off-the-shelf” engine,

rather than a purpose-built solution, for educational applica-

tions. We are also in the process of developing a prototype

integrated development environment (IDE) that allows us to

convey the synthesized feedback to a user. We evaluated the

IDE throughout our iterative design process, leading to both

a final design plan and some recommendations for others

considering broader use cases of existing synthesis engines.

2 TA Feedback in Office Hours

To design an automated feedback tool, we decided to gain

insight into what functionality it should support by explor-

ing the type of help feedback providers provide. Like many

programming educators, we, the authors, have some sense

of how we provide feedback to students. However, this is

primarily determined by our own experience. Some educa-

tors have furthered their knowledge of feedback, studying

feedback from the instructor’s perspective [15, 40] and in the

laboratory setting [4]. In comparison, we wanted to under-

stand TA-student interactions in a realistic environment as,

by and large, TAs are the primary feedback providers for CS1.

Therefore, we developed a formative, observational study of

office hours to understand how TAs provide feedback. We

were partly motivated to conduct this study by existing work

using formative studies for programming system design [7].

2.1 Study Design and Mechanics

Our formative study focused on observing TAs during their

office hours for two Introduction to Computer Science courses

at our institution, which we will refer to as CS1A and CS1B.

CS1A was a Summer 2017 CS1 course taught in Python with

74 enrolled students, 7 TAs, and one professor. All TAs had

14

Towards Answering AIORT Automatically using Program Synthesis SPLASH-E ’19, October 25, 2019, Athens, Greece

previous experience as teaching assistants in computer sci-

ence at our institution. CS1B was a Spring 2018 CS1 course

taught in MATLAB with approximately 250 enrolled stu-

dents, 6 graduate TAs (1 new), 27 undergraduate TAs, and

the same professor. The two courses cover the same gen-

eral curriculum, with some changes due to the length of the

summer session and the programming language. The topics

covered by both courses include basic programming features,

objects, recursion, and for/while loops. Our aim in studying

these courses was to diversify our understanding beyond a

single beginning language or class structure.

We designed the study to be as unobtrusive as possible,

since our primary goal was to capture the genuine nature

of office hours. We therefore recorded TA-student interac-

tions with the medium chosen to minimize intrusiveness

in different settings. The mediums included handwritten or

typed notes, audio, or video recording. For CS1B, we shad-

owed only graduate student office hours, as the professor

was concerned with potential overcrowding in undergradu-

ate sessions. TAs and students were asked at the beginning

of the study if they would like to participate in a voluntary

research study focused on understanding how TAs provide

feedback. If their consent was obtained, it covered the length

of the study period (the last month of each course). Although

shadowing office hours allowed us to observe TAs’ interac-

tions with students, we augmented our observational study

with optional, unscripted interviews with the TAs. The inter-

views allowed us to obtain a perspective on TAs’ impressions

of effective feedback practices.

2.2 Data Analysis

We collected 37 TA-student interactions from CS1A and 13

from CS1B. Five of the CS1A interactions were excluded for

various reasons,
3
leaving us with a total of 32 interactions

for CS1A. We transcribed the usable interactions and then

performed a grounded theory analysis [8].
4

Our analysis aimed to characterize the type of help the

TAs provided. We performed our initial analysis on the CS1A

course data using three individual coders. The first coder

(first author) assessed all of the interactions, developed a

set of categories for types of TA-student interactions, and

classified all 32 data points. A second coder (second author)

provided example interactions for these categories without

looking at the data. The second coder and a third coder

(research intern) then independently categorized the inter-

actions into the existing categories. We calculated a Fleiss’

3
The five interactions were excluded either because of errors with recording

(2) or prominent unconsented student voices (3)

4
Grounded theory analysis contends that we can understand the content in

communication by analyzing the type of “common ground” shared by the

speakers. This standard qualitative analysis method, like most qualitative

research, relies on two or more “coders” who categorize interactions accord-

ing to the given property being studied and the research goals. These coders

then typically reach consensus about each data point’s final classification.

Kappa agreement score for each independent category and

received results ranging from slight to almost perfect agree-

ment, with on average moderate agreement. As an exam-

ple, the score was 0.65 for Salvage. Given the full cycle of

analysis for the CS1A data, the first author solely coded the

subsequently collected CS1B data. All selected quotes below

have been lightly edited and the participants anonymized

(TA1A - TA7A for CS1A and TA1B - TA6B for CS1B).

2.3 Results

Our study suggests that TAs provide feedback aimed at

helping students reach a correct solution and that feed-

back frequently occurs at different levels of granularity. Our

grounded theory analysis identified 7 categories of feedback

that range from Specification, in which the TA explains the

assignments’ specification to the student, to Language Fea-

ture, where a TA explains what functions to call to accom-

plish a certain task (Fig. 2). An example of Language Fea-

ture feedback would be TA5A’s feedback “randint needs
a minimum and a maximum value” when helping a student

understand the input to a library function.

In contrast to the finer-grained feedback, feedback in the

Salvage category is more holistic. When a TA begins sal-

vaging a student’s program, they start out by identifying

an error in the student’s current solution (“traditional” de-

bugging). Then they ask guiding questions to determine

the student’s confusion, assess the student’s conceptual un-

derstanding, and ultimately lead the student to identify the

error(s) themselves. This guidance during the student’s solu-

tion process is what specifically differentiates salvage from

other types of feedback. Of particular note is how the TAs

provide the feedback. They do not tend to instruct the student

to start over from scratch, but rather to make local changes

(TA4A: “I think we can simplify a little bit and change the
order of the recursive call”) that may then have far-reaching

implications. For instance, in the same interaction with a

student, TA4A ended up guiding the student from a solu-

tion containing a for loop and an accumulator to a correct

recursive solution.

In our 5 interviews with CS1A and CS1B TAs, they spoke

specifically about paths to correct solutions as a core consid-

eration behind how they provide feedback. They discussed

how to identify if a student’s work is correct, when (or if) to

present a fix, and where in the solution process they provide

help. TA1A made the following general points:

Usually I’ll try and figure out what’s wrong, and then
I’ll give them, like a hint or something, about how to get
there ... if it’s something really weird, I’ll just straight
up tell them “your implementation here is not right.”

TA1B discussed what to do when a student is too far down

an incorrect path for their work to be salvageable:

When I run out of ways to help them, I sometimes show
them the answer. I show them “this is the way to do this”

15

SPLASH-E ’19, October 25, 2019, Athens, Greece M. Q Feldman, Y. Wang, W. E. Byrd, F. Guimbretière & E. Andersen

and I try to explain backwards. Like, “knowing this is
the correct solution, how would you get here?” ... Even
though I give them the answer, I hope they understand
the process.

TA3A considered the situation of a student beginning with

a general conceptual approach to a problem and narrowing

it down to a specific implementation:

Usually they will get to the point where [they will say]
“I probably should be using some kind of iteration” and
then we can talk about ... if they’re on the right track,
and if they’re not, I’ll give them more guidance to steer
them in the right direction. But I like to have them at
least have some trial and error in office hours, if I can.

Taken together, our interaction classification and our TA

interviews suggest a theme. Most students want an answer

to some version of the question “Am I on the Right Track?”

and most TAs want to provide some version of an answer to

that question. The help they provide varies and can be TA-

specific; it can be conceptual, simply a “Yes” or “No” answer,

or even the entire solution to the problem.

To be clear, we are not making a broad claim about a per-

vasive existence of this classification and theme. While on

the one hand the study targeted two courses with differ-

ent programming languages, student bodies, and TAs, the

amount of data was rather limited and reflected a narrow

population. For example, office hours for CS1B graduate TAs

were sparsely attended and, as mentioned above, we were

not permitted to observe the undergraduate office hours for

CS1B, where we believe that the majority of interactions

occur. This study also took place in a limited time period

(the last month of material for each course) and we only

studied courses at a single institution. We also approached

this study with the idea of building an automated feedback

tool in mind. Nonetheless, the study provides evidence of

the potential value of “Am I on the Right Track?” feedback

in particular settings.

3 Synthesizing Feedback Automatically

In this section, we motivate why and how one might pose

“Am I on the Right Track?” (AIORT) feedback as a synthe-

sis query. AIORT feedback relies on determining whether a

student can arrive at a correct solution, given their current

partial solution. Formally, we want to determine if there ex-

ists a set of local changes that can be applied to the student’s

partial program PS to transform it into a final program that

has the same “functionality” as a desired correct solution.

Local changes to a student’s partial solution are captured

by the addition and deletion of code. For instance, for the

following incorrect implementation of isThree, it is clear
that the 4 should be deleted and a 3 added in its place:

define isThree x:
return x == 4

Feedback The TA...

CS Concept explains a high level programming de-

sign feature (e.g. recursion, while loop)

Grading answers a student question about an

assignment or exam grading

Guidance provides high level guidance about an

approach to a given problem

Language

Feature

explains how to use a language feature

(e.g. library function)

Salvage helps the student towards a correct solu-

tion path, given their current (typically

incorrect) code

Specification explains a function specification (e.g.

the overall goal, in scope or out of scope

inputs, etc.)

Test Case suggests a test case for the student to

consider

Type helps the student by highlighting type

information (e.g. input types for func-

tions or methods)

Figure 2. Classification concepts for TA-student interac-

tions.

However, consider this incorrect implementation of

replaceEight, a function that, when implemented correctly,

recursively replaces all elements in a list with the number 8:

define replaceEight x:
if empty x:

return [8]
else:

return 8 ++ replaceEight (rest x)

This implementation is possibly incorrect in either the base

case condition or its return value, depending on the wording

of the specification. In the first case, the condition should be

changed to len x == 1 and, in the second case, the return

value for the base case should be changed to the empty list.

This is an example where there are multiple local changes

that can result in a correct solution, but it is not clear which

one to choose.

Furthermore, for any reasonable definition of local, there

are an infinite set of possible changes, whichmakes it difficult

to find the “right” one, even if we could formally specify such

a notion. Yet, we would like to provide a general solution

to this problem in order to generate AIORT feedback. The

number of possible changes makes many simple algorithms,

such as brute force search, infeasible. However, program

synthesis is frequently used to automatically generate code

edits towards some specification in an infinite search space

[19]. This is the approach we take.

Modern program synthesis algorithms tend to use sketch-
ing, with some notable exceptions (e.g. Synquid [30]). In-

troduced by StreamBit [37] and made popular by SKETCH

[36], sketches are partial implementations with holes that
denote where the engine should synthesize new code. Holes

16

Towards Answering AIORT Automatically using Program Synthesis SPLASH-E ’19, October 25, 2019, Athens, Greece

are written “??” as seen in the following sketch for isThree:
define isThree x:

return x == ??
AIORT feedback is a non-standard use case for sketches be-

cause of the frequency and variability of the queries. Usually

users either create a single sketch or create a mechanism for

generating similar sketches automatically at pre-determined

intervals. In contrast, AIORT feedback needs to be generated

in real-time and repeatedly at variable intervals.

Next, we consider how to generate sketches based on a

student’s partial solution. We take as input a correct imple-

mentation PI , typically provided by an instructor, a set of

representative test cases, and the student’s partial solutionPS.

From PS, we attempt to synthesize a program that matches

the output of PI on all representative test cases.

Since we are building a user-facing tool, we need to con-

sider whether to expose the notion of holes directly to the

tool’s user. Although this is typical in most synthesis applica-

tions, we believe that it is ill-advised for educational use cases.

On the one hand, intuitively, exposing holes would seem to

allow users to specify holes exactly where they believe code

should be added, potentially instilling more understanding

and confidence in the synthesized feedback. However, from

pilot studies with TAs, we found that because most users are

not accustomed to interacting with synthesis tools, explic-

itly surfacing holes appears to be confusing and potentially

detrimental to the feedback process. We instead insert holes

automatically without any user intervention. We developed

two main principles for automatic hole insertion based on

our feedback goals: (1) we only consider adding, not deleting,

code and (2) we do not add holes as inner nodes of the AST.

The idea behind not deleting code is being able to pro-

vide clear, correct, and contextualized feedback. First, giving

feedback in the context of their code helps students learn.

Maintaining all of the code they wrote and only considering

additions allows for the most context possible. Second, stan-

dard sketches provide no facility for deleting code. To delete

code, we would need to choose a piece of the student’s partial

implementation, delete it, and replace it with a hole. How-

ever, the above replaceEight example shows that which

code deletion to choose can be non-obvious without user

input. In this model, we would have to perform deletions

automatically, which could result in synthesized output that

differs significantly from what the student intended.

In general, holes can be added in any location in the stu-

dent’s code. This does include degenerate cases, notably

“expression wrapping” in which a given expression e can

be turned into an argument of a hole (e.g. ?? e). There are
numerous issues with allowing wrapping. First, for a general

synthesis approach, the algorithm can consider all functions

in the source language, including those that the student has

not previously seen. Another problematic synthesis result is

a “guarded false” statement (e.g. if false:), which provides

no feedback on the student’s work that has been wrapped.

Program P ::= D D∗ . . .
Definition D ::= (define x e)
Expression e ::= x | c | p | ℓ | ’d | (quote d)

| (lambda f e) | (if e1 e2 e3)
| (e e∗ . . .)

Formals f ::= x | (x∗ . . .)
Constant c ::= #t | #f | n | s
Datum d ::= c | a | ()
Predicate p ::= and | or | not | <

| > | equal? | null?
ListOp ℓ ::= cons | car | cdr | list

Figure 3. Grammar for the subset of Scheme supported by

our tool (adapted from [1]). Here x is a legal Scheme variable,

n is a legal Scheme number, a is a legal Scheme symbol, s is
a legal Scheme string, and the notation g∗ . . . represents zero
or more occurrences of syntactic entity g. Although users

can use cons to make pairs of datums and list to form lists,

we do not support feedback for either pairs or non-cons lists.

To exclude these cases, we do not add holes as inner nodes of

the AST, instead only inserting holes as leaves (e.g. in place

of arguments missing from a function). We require a map

from functions to their arity, from which we can calculate

the necessary number of holes to insert.

To exhibit our principles, consider the following partial

implementation of isThree:

define isThree x:
return == (1 +)

Below are two conceivable ways of adding holes to this

implementation:

define isThree x:
return ?? == (1 + ??)

define isThree x:
return ?? (?? == ??)

Our approach would produce the sketch on the left, but not

the one on the right. In order to produce the one on the right,

we would need to break both of our principles: (1) delete

student code (i.e. (1 +)), replacing it with a hole and (2)

insert a hole as an inner node, producing the bold ??.

3.1 Implementation

To explore the viability of our approach via a prototype tool,

we instantiated it using an existing synthesis engine with

a sketching-style interface. There are numerous such en-

gines publicly available: Rosette [39], Barliman [6], SKETCH

and its derivatives [36], methods using the PROSE SDK [32],

among others. Two characteristics of an ideal synthesis en-

gine for our use case are language choice and generality.

Some methods are written in a base language and allow the

user to specify their synthesis query via a DSL whereas oth-

ers directly support a specific subset of an existing language.

Ultimately, we wanted the engine to support a language used

extensively by novices, with input assumptions that are not

more restrictive than the requirements discussed above.

17

SPLASH-E ’19, October 25, 2019, Athens, Greece M. Q Feldman, Y. Wang, W. E. Byrd, F. Guimbretière & E. Andersen

Our prototype uses the Barliman engine [6]. Barliman syn-

thesizes programs in Scheme using the miniKanren logic pro-

gramming language. Barliman’s use of Scheme is well-suited

to an educational environment, as Scheme-like languages are

commonly used for CS1 courses (e.g. Brown University [25]

and Indiana University [34]) or as a first functional language.

Scheme-style languages are also likely to be unfamiliar to

non-novice programmers learning a new language, present-

ing another student population for evaluation. The specific

subset of Scheme our tool supports is shown in Fig. 3. We

chose the subset of Scheme based on both Racket Beginning

Student Language [12] and the Scheme subset supported by

Barliman.

Runs of Barliman adapted for our tool can either fail or

succeed. When Barliman fails, it means that, given a set of in-

put test cases and a partially completed program with holes,

there are no Scheme expressions that can fill the holes to pro-

duce a correct solution. If Barliman fails on all of our sketches

of the student’s solution, then we say that they are not on

the right track (AIORT returns false). Any program that is

either unparsable or not in our subset of Scheme (Fig. 3) will

not be on the right track. Success means that Barliman has

found Scheme expressions that produce a correct solution.

In the event of a success, we say that the student is on the

right track.

4 User Interface

As noted previously, our goal is to incorporate “Am I on the

Right Track?” (AIORT) feedback into a student’s learning

environment. We chose to do this by tightly coupling the

steps a student takes to write their program with how they

receive feedback automatically inside a prototype integrated

development environment (IDE) based on the principles in

the previous section. The student can begin a programming

assignment by first considering the specification and type

signature of the goal function (Fig. 4, #2). They can then

begin programming normally in the center text box of our

IDE. However, our prototype currently only supports defin-

ing a single function per instance. This is a limitation of

the prototype, not the approach. The rest of the IDE was

designed to help facilitate the student’s programming pro-

cess. If the student forgets some syntax or semantics of a

Scheme operator, they can use the Term Lookup section (#1)

to find that information. To draw attention to potentially

useful operators, we present results used in the instructor’s

reference solution at the top of the list, followed by the rest

of the relevant operators that we support. As they approach

a full solution, students can write tests and run them in the

Test Cases section (#5). If students are not sure what tests

to consider, they can ask for a generated test case at #4 and

the tool will generate a test that passes the instructor’s solu-

tion, but fails the student’s solution. We provide generated

tests as both an extra feature that can be synthesized and to

provide a lower barrier to entry for success in a test-drive

development process. Finally, if the student wants to restart

the assignment, the arrow at #2 resets the center text box to

the starting state.

The AIORT feedback feature is shown at #3. It functions

as proposed in Fig. 1: the student can press the “Am I on

the Right Track?” button at any time to receive a YES/NO

answer. We transform the student’s solution in the main text

box to a sketch at the time the student presses the AIORT

Figure 4. The current user interface for providing AIORT feedback; evaluated in the pilot study with novice Schemers.

18

Towards Answering AIORT Automatically using Program Synthesis SPLASH-E ’19, October 25, 2019, Athens, Greece

button. We then execute our sketch generation strategy, run

the resulting Barliman query, and, depending on the output,

serve a YES, NO or MAYBE answer. MAYBE means that the

Barliman query took too long to run, triggering a timeout

that we added to the UI.

Our prototype interface is simple, as it was designed to

help us iterate on how to present feedback to the user. This

allows us to directly observe how users interact with AIORT

feedback, especially as it differs significantly from standard

IDE feedback options (e.g. linting or term autocomplete). In

addition, a prototype allows us to control the learning envi-

ronment and iterate quickly on different interaction styles.

In the future, adding synthesized feedback to established ed-

ucational IDEs (e.g. DrRacket [13]) would be advantageous.

5 Evaluation

We evaluated the performance of our approach, aiming to

answer three main questions:

- Is our synthesis approach able to provide feedback on

partial student solutions?

- Do users find the “Am I on the Right Track?” (AIORT)

feedback helpful?

- How do users interact and engage with our tool?

First, we present some examples of the feedback our syn-

thesis approach provides on real partial implementations.

We then present two evaluations of our user interface. As

noted above, we performed an iterative design of the UI in

order to consider how users should interact directly with

synthesized feedback. The first pilot user study considers an

alpha version of the UI with TAs as our users and the second

pilot study evaluates the UI described in detail above with

students as our users.

5.1 Can We Synthesize Feedback?

During our pilot studies, we were able to explore how well

our sketching approach generates feedback for users writing

code in our prototype IDE. Here we provide some examples

of what our system can synthesize. We did not collect exten-

sive summary statistics or timing information, but in future

work we would like to further test the robustness of our

approach.

A key motivation for using a general purpose synthesis

engine is supporting alternative correct solutions. For the

function first-not-doll?, adapted from How to Design

Programs (HtDP) [11], a student in our second pilot study

wrote the following code, which the tool correctly said was

on the right track:

(define first-not-doll?
(lambda (x)

(if (equal? 'doll (car x)) #f #t)))

Notice that, though this is a common and correct solution, it

is likely not the instructor’s solution provided to our system

nor the typical solution an instructor might provide.

We also want to provide feedback in real-time during the

solution process. In our first pilot study, we used a function

replace (adapted from HtDP) which mimics our running

example replaceEight above, but replaces elements with

’a rather than 8. One TA had the following partial solution:

(define replace
(lambda (x)

(if (null? x) '() (cons))))

The synthesis engine produced the outputs ’a and (replace
(cdr x)) to fill the two holes added automatically after cons.
This is a significant component of the solution showing that

our tool can support the beginning of the solution process.

In our studies, the synthesis engine did not always perform

as the user would expect (see below). Anecdotally, we gener-

ally observed users disagreeing with the tool’s synthesized

feedback in one of three cases: (1) the engine said NO cor-

rectly and the user did not understand why, (2) we reached a

UI-instituted timeout for Barliman and the user received no

feedback, or (3) the user’s internal model for whether they

were on the right track did not match the system’s model.

5.2 Code Snippet Feedback with TAs

Our first pilot evaluation focused on understanding TAs’

perspectives on interacting with synthesis features, holes,

and our IDE. The IDE and the synthesis features were in

early stages when we performed this evaluation. Thus there

were a few issues that impacted the tool and caused it to

crash. The system evolved between the first and second pilot

studies, but the overall approach remained the same.

Study Mechanics:We recruited 10 graduate students at our

institution who each had been a TA for at least one CS course

at a 4-year college or university. TAs were first presented

with a consent form to sign and thenwere randomly assigned

to either an A or B condition. In the A condition, the feedback

feature was visible in the IDE and, in the B condition, it was

not. We then provided all TAs with a short Scheme lesson

via a pre-recorded video. After the Scheme tutorial, TAs

were asked to replicate their practices for office hours by

interacting with incorrect student code using our interface.

We explained the basic interface functionality to the TAs,

but did not explain the synthesis feature. This was a choice

in order to capture the TAs’ first impressions. We obtained

the incorrect student solutions through a small study that

we performed with novice functional programmers based

on exercises in HtDP. After approximately 20 minutes of

interacting with the tool we asked the TA to stop, fill out a

post survey, and participate in a short interview about their

experience with the tool. The session took about an hour.

Main Differences from current UI : There were two specific

differences between the UI presented above and the alpha

interface used in this evaluation (Fig. 5). First, the alpha inter-

face exposed holes to the user. They were allowed to insert

holes themselves and, when a hole was added automatically,

19

SPLASH-E ’19, October 25, 2019, Athens, Greece M. Q Feldman, Y. Wang, W. E. Byrd, F. Guimbretière & E. Andersen

Figure 5. The central component of the early stage (alpha)

interface used in the TA pilot study. If the user pressed the

green arrow, x 3 would be inserted at the hole marked ___.

it was inserted in the code as ___. If there were multiple holes

next to each other (e.g. (equal? ?? ??)), we condensed

them visually into a single hole. This choice was made to

allow for some visual consistency; a hole means missing

code. At the time, we also did not want to explicitly tell the

student how many expressions were missing, because we

think that they should learn to extract this information from

the function themselves. Calls to create Barliman queries

were also generated automatically every few seconds, rather

than waiting for a button press. Second, after a Barliman run,

the TA had the option to insert the fully generated code edit

into their solution. We instantiated any logic variables by

picking from a set of values of their type.
5

Results: The results of our study were mixed, but suggested

specific areas for improvement. One limitation was that the

TAs did not experience many interactions with the AIORT

feedback; out of 10 TAs, 6 of which were in the synthesis (A)

condition, only 1 ended up seeing the output of the engine.

Four of the six had holes automatically inserted, but they did

not complete the code insertion process.

In general, the TAs had some negative comments about

the feedback and how it was presented. For instance, one TA

said that they felt that the fully automated feedback features

caused them to have a lack of control over the process:

I feel like it is going ahead without me ... why is it going
off and doing things! I don’t want it to do things yet; it’s
stealing my thunder. Is it actually changing the code? I
think it is which is scary cause I want the student to fix
the code not the program. (TA #3)

However, some TAs did see potential for the general ap-

proach of the tool. The same TA that complained about lack

of control also noted:

I am not there and they are stumped, then having that
button could on the one hand help them. But, on the
other hand, just giving them the answer without forcing
them to know why [is not good]. If they are stumped
and diligent, they can ... be given the right answer and

5
We perform the same instantiation for automatically generated test cases

then go reverse engineer why that’s the right answer
and that’s potentially really helpful to get somebody
unstuck. (TA #3)

This is similar to the feedback style of TA1B from our obser-

vational study.

Our major takeaway from this study was that exposing

holes and the synthesized code was not the right interaction

modality. This seemed particularly detrimental with TAs as

our user population, given that they have both their own

solution styles when writing code and specific ways in which

they like to help students. We therefore chose to redesign

the tool with opt-in, manual feedback features and relegated

holes to a backend-only feature. This feedback, obtained

from the early prototype of our interface (Fig. 5), drove us to

change the interface to the one presented in Section 4.

5.3 YES/NO Feedback with Scheme Novices

Given the results of our TA pilot study, we performed an-

other round of user interface design and obtained the design

described in detail in Section 4. The goal of the second pi-

lot study was to determine if the new interface is helpful

and engaging. We recruited students with a background in

programming, but no formal computer science education,

from a group of graduate student scientists at our institution

working in computation-adjacent fields (biology, social sci-

ence, etc.). In total, five students enrolled in the study, via

either email solicitations or our institution’s SONA system.

Students met the study criteria if they met the recruitment

criteria and had some background in high-level program-

ming (e.g. R, web development), but were excluded from the

study if they could easily answer beginner questions in a

functional programming course or had significant knowl-

edge of a functional language. We had four valid responses

in total.

Of the four valid responses we obtained, two students

interacted with the synthesis feature and two students in-

teracted with a control UI. After completing the consent

form, students were given a walkthrough of how to use the

tool and a Scheme lesson on a blackboard. The lesson was

pre-planned to cover certain topics, but varied slightly from

student to student. After the walkthrough and lesson, stu-

dents were left on their own to complete as many exercises as

possible out of 5 adapted from HtDP (is-three?, replace,
first-not-doll?, flip, and filter). We required those

who had the synthesis feature IDE to interact with the help

features (AIORT feedback and test case generation) at least

once per exercise as, in previous studies, participants tended

to ignore them and proceed with programming as usual. We

also implemented good/bad performance buttons that could

be used to report opinions on AIORT feedback and test case

generation (to the left of #3 in Fig. 4), although students were

not required to use them. For the two students who had the

20

Towards Answering AIORT Automatically using Program Synthesis SPLASH-E ’19, October 25, 2019, Athens, Greece

feedback UI, they reported helpfulness 10 times for AIORT

feedback, including both positive and negative responses.
6

Results: The main takeaway of our second study was a

mismatch between our approach and the students’ expec-

tations. Of the 10 times the two students who experienced

AIORT feedback reported performance, 8/10 times the per-

formance report their impression was negative. However, we

confirmed that the feedback was correct for all 10 instances

and students were explicitly shown examples of how the

feedback features worked. In general, the students had a

lukewarm reaction to the tool: the students with feedback

both responded “somewhat agree” to the statement “the feed-

back features were helpful when solving problems.”

The mismatch between our model and student expecta-

tions seems to stem from how the tool determines if they are

on the right track. As noted in our theoretical approach, we

do not perform expression wrapping when inserting holes

automatically. However, consider the following code from

the study for replace:

(define replace
(lambda (x)

(cons 'a (replace (cdr x)))))

This implementation contains the correct recursive call for

the replace function, but it is missing the base case. The

feedback here is that the student is not on the right track

because there are no AST leaves missing an expression. How-

ever, understandably, the student reacted negatively, since

they believed they were on a correct solution path. Note

that we believe that the negative reaction was to the exact

response (YES/NO) from the feedback feature, not to the

feature itself.

6 Discussion

A key takeaway is that, even when made explicit, there is

a disconnect between how users perceive the synthesized

feedback and its actual functionality, even when they believe

that the tool is potentially helpful. We believe that this arises

because working one-on-one with an automated feature

as powerful, but equally as limited, as synthesis is a new

experience for most coders. Therefore, our study results

embolden us to explore how to better expose synthesis to

the student.

A possible key improvement may lie in integrating the

synthesized feedback better into the student’s workflow. We

are currently considering a different approach (Fig. 6) that

6
Although not our main focus, we also obtained some results for evaluating

automatic test case generation. There were 10 helpfulness ratings for test

case generation (5 positive, 5 negative). Both students responded “somewhat

disagree” to “The tool suggested test cases I would not have come up with

on my own.” This reaction may have occurred because the students were

skilled enough with non-functional programming to write meaningful test

cases. They responded 7/10 and 9/10 respectively to “On a scale of 1-10, how

comfortable are you with programming?”

Figure 6. This new interface design allows users to request

AIORT feedback with ? and revert to previous AIORT ver-

sions with << and <.

uses a user interface modeled after play/pause/rewind but-

tons. The goal is to allow the student to check if they are

on the right track at any point (via ?) but also revert to

previous checkpoints where they were on the right track.

The << button replaces the current implementation with the

last correct implementation obtained from pressing ?. The <
button replaces the current implementation with the last cor-

rect implementation from a set of automatic AIORT checks

performed every 2 seconds in the background. This button

allows users to functionally “undo” the most recent change

that lead them down an incorrect path. In theory, using all

of ?, <<, and < as part of the programming process may help

students learn how the synthesized feedback works in an

intuitive way.

The main limitation of our evaluation was the size of the

studies and their lack of robust quantitative analysis. The

number of study participants for each interface iteration was

small enough that we are unable to draw any statistically

significant conclusions. As future work, it would be help-

ful to test our tool in a larger lab study or in a traditional

Scheme learning environment. In particular, our user studies

considered TAs and novice Schemers, but no CS1 students.

7 Related Work

7.1 Tools for Aiding Student Learning

Successful tools for CS1 manage to use student and staff

effort more effectively. A classic example are educational

IDEs or IDE plug-ins built to help scaffold learning, such

as DrRacket [13] and BlueJ [27]. Some tools go beyond the

coding process and specifically address test-driven develop-

ment by using peers to assess and provide test cases [31].

There has been a study on extending a single staff member’s

effectiveness by allowing them to work with many students

in real-time [21]. Peer grading systems structure the process

of providing peer feedback for hundreds of students when

there are staffing limitations [9, 28]. Other recent work has

focused on visualization, such as modeling code execution

[20, 26], student choices of variable names [16], and student

solutions at scale [18]. Although these tools make better use

of human effort, they have some limitations: (1) for systems

that rely on peers, feedback quality can be variable and (2)

21

SPLASH-E ’19, October 25, 2019, Athens, Greece M. Q Feldman, Y. Wang, W. E. Byrd, F. Guimbretière & E. Andersen

systems for staff members can improve productivity, but do

not replace the benefits of additional personnel. HelpMeOut

[22] is an approach that provides real-time, automated feed-

back to students learning Java for art and design applications.

HelpMeOut leverages the use of existing knowledge about

student errors to inform feedback for future students. Our

approach does not consider other students’ work.

Rooting the development of an automated feedback tool in

human feedback practices is not a new concept; in fact, when

writing on intelligent tutoring systems (ITS) for Science in
1985, Anderson et al. noted, “Computer systems ... are being

developed to provide the student with the same instructional

advantage that a sophisticated human tutor can provide” [2].

However, there is currently an incomplete understanding of

what human tutor feedback looks like in office hours. There

is work on how to increase diversity using TAs [29], how

to use an apprenticeship model to train TAs [40], and what

kinds of questions TAs ask [4, 15]. The goal of our TA study

was to observe the full breadth of office hours.

7.2 Automated Feedback Techniques

Generating feedback for student work automatically has

been studied since at least 1960 [24] by a number of differ-

ent academic and industrial communities. ITS, which allow

students to obtain real-time feedback while working on prob-

lems as part of a pre-specified curriculum, have been success-

ful in domains such as K-12 math [5] and programming. The

LISP tutor [3] has specific relevance to this work, as we use

the Scheme programming language in our prototype imple-

mentation. Additional work has augmented ITS feedback by

using real student data for Python programming [33]. Provid-

ing feedback without prior assignment-specific information

is more difficult; recent work succeeded at synthesizing such

feedback for K-8 math [10].

There is a current surge in work on automated feedback

techniques for programming due to recent innovations in

program synthesis. Singh et al. [35] can identify the smallest

number of changes needed to transform an incorrect student

Python program into a correct program using a hardcoded

error model. Subsequent work by Head et al. [23] and Suzuki

et al. [38] has been able to provide more general Python

feedback based on the Refazer system, which synthesizes

Python program transformations. Head et al. built two sys-

tems, one based on real student data, to cluster student code

and provide bug fixes for buggy student programs in Python.

Our system is most similar to FixPropogator, which itera-

tively improves bug fixes to student code based on teacher

provided results. In contrast, our work focuses on replicat-

ing interactions from office hours in a functional program-

ming context and in real-time. Ask-Elle also provides func-

tional programming feedback, by guiding students towards

model solution strategies in Haskell [14]; our work aims to

support the breadth of individual student responses. In the

data-driven feedback literature, work has looked at different

interaction techniques for how to present help [17]. Specifi-

cally of relevance to our future work is their discussion of

the “push” and “pull” models for providing help, as well as

whether it is preferable to resolve a given error by guiding

the student using the most common error fix or the most

correct solution.

8 Conclusions

This paper explores how to provide “Am I on the Right

Track?” (AIORT) feedback automatically for programming

assignments using program synthesis. Our approach consid-

ers how to provide general feedback in real-time without

using information about known student errors. To imple-

ment this idea, we considered a non-standard use case for

automatically generating program synthesis sketches. We

also performed an iterative, and ongoing, design process for

an IDE which presents synthesized feedback to a user.

Applying state-of-the-art synthesis tools directly to edu-

cation, rather than adapting or building purpose-built algo-

rithms, is a challenging idea. We have some recommenda-

tions that we believe may set up others who want to take on

this challenge for success. First, we have shown that synthe-

sis can work in this limited information environment. This

expands our understanding of where synthesis can be used

to provide feedback. We also see understanding the educa-

tional context as key to the success of any synthesis-based

feedback tools. Performing a formative study on the educa-

tional component you are trying to target, as we did in our

TA study, can reinforce design decisions for the tool at large.

Ultimately, the main challenge of applying state-of-the-art

PL algorithms to education is that the algorithms and the

domain are not natively compatible. As seen in our approach

section, it is difficult, and sometimes entirely unclear, how to

obtain the right balance between the computational needs

of the algorithms, the ideal education situation, and engag-

ing user interaction. This is not a new problem and we are

nowhere near the first to explore it. However, it is not going

away, since synthesis continues to evolve and more novel

applications domains are being considered. We propose that

designs like ours take a step in the right direction for ex-

ploring how to apply computational systems to education.

Acknowledgements

Thanks to our study participants & Daisy Fan; Xinqi Lyu,

Yuntian Lan & Jinyan Zheng for data analysis and coding;

Haym Hirsh & Jonathan DiLorenzo for helping craft the

paper; and Youyou Cong & Adrian Sampson for their PL

perspectives. Research reported in this publication was sup-

ported in part by the National Center For Advancing Trans-

lational Sciences of the National Institutes of Health under

Award Number 3OT2TR002517-01S1. The content is solely

the responsibility of the authors and does not necessarily rep-

resent the official views of the National Institutes of Health.

22

Towards Answering AIORT Automatically using Program Synthesis SPLASH-E ’19, October 25, 2019, Athens, Greece

References

[1] Harold Abelson, R. Kent Dybvig, Christopher T. Haynes,

Guillermo Juan Rozas, NI Adams, Daniel P. Friedman, E Kohlbecker,

GL Steele, David H Bartley, R Halstead, et al. 1998. Revised 5 report

on the algorithmic language Scheme. Higher-Order and Symbolic
Computation (1998).

[2] John R Anderson, C Franklin Boyle, and Brian J Reiser. 1985. Intelligent

tutoring systems. Science 228, 4698 (1985), 456–462.
[3] John R Anderson, Frederick G Conrad, and Albert T Corbett. 1989. Skill

acquisition and the LISP tutor. Cognitive Science 13, 4 (1989), 467–505.
[4] Kristy Elizabeth Boyer, William Lahti, Robert Phillips, Michael D

Wallis, Mladen A Vouk, and James C Lester. 2010. Principles of asking

effective questions during student problem solving. In Proceedings of
the 41st SIGCSE Technical Symposium. ACM, 460–464.

[5] John Seely Brown and Richard R Burton. 1978. Diagnostic models for

procedural bugs in basic mathematical skills. Cognitive science 2, 2
(1978), 155–192.

[6] William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and

Matthew Might. 2017. A Unified Approach to Solving Seven Pro-

gramming Problems (Functional Pearl). Proc. ACM Program. Lang. 1,
ICFP (Aug. 2017).

[7] Sarah E Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon:

Scraping Distributed Hierarchical Web Data. In The 31st Annual ACM
Symposium on User Interface Software and Technology. ACM, 963–975.

[8] Herbert H Clark, Susan E Brennan, et al. 1991. Grounding in com-

munication. Perspectives on socially shared cognition 13, 1991 (1991),

127–149.

[9] Luca de Alfaro and Michael Shavlovsky. 2014. CrowdGrader: A tool

for crowdsourcing the evaluation of homework assignments. In Pro-
ceedings of the 45th ACM technical symposium on Computer science
education. ACM, 415–420.

[10] Molly Q Feldman, Ji Yong Cho, Monica Ong, Sumit Gulwani, Zoran

Popović, and Erik Andersen. 2018. Automatic Diagnosis of Students’

Misconceptions in K-8 Mathematics. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). ACM.

[11] Matthias Felleisen, Robert Bruce Finder, Matthew Flatt, and Shriram

Krishnamurthi. 2001. How to design programs: an introduction to
programming and computing. MIT Press.

[12] Matthias Felleisen, Robert Bruce Finder, Matthew Flatt, and Shriram

Krishnamurthi. 2014. How to Design Programs, Second Edition. MIT

Press.

[13] Robert Bruce Findler. 2014. DrRacket: The Racket Programming Envi-

ronment. (2014).

[14] Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L Thomas van Bins-

bergen. 2017. Ask-Elle: an adaptable programming tutor for Haskell

giving automated feedback. International Journal of Artificial Intelli-
gence in Education 27, 1 (2017), 65–100.

[15] Michael Glass, Jung Hee Kim, Martha W Evens, Joel A Michael, and

Allen A Rovick. 1999. Novice vs. expert tutors: A comparison of style.

InMAICS-99, Proceedings of the Tenth Midwest AI and Cognitive Science
Conference. 43–49.

[16] Elena L Glassman, Lyla Fischer, Jeremy Scott, and Robert C Miller.

2015. Foobaz: Variable name feedback for student code at scale. In

Proceedings of the 28th Annual ACM Symposium on User Interface
Software & Technology. ACM, 609–617.

[17] Elena L Glassman, Aaron Lin, Carrie J Cai, and Robert C Miller. 2016.

Learnersourcing personalized hints. In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social Com-
puting. ACM, 1626–1636.

[18] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip Guo, and

Robert C. Miller. 2015. OverCode: visualizing variation in student

solutions to programming problems at scale. Transactions on Computer-
Human Interaction (2015).

[19] Sumit Gulwani, Alex Polozov, and Rishabh Singh. 2017. Program
Synthesis. Vol. 4. NOW. 1–119 pages. https://www.microsoft.com/en-

us/research/publication/program-synthesis/

[20] Philip J Guo. 2013. Online python tutor: embeddable web-based pro-

gram visualization for cs education. In Proceeding of the 44th ACM
technical symposium on Computer science education. ACM, 579–584.

[21] Philip J Guo. 2015. Codeopticon: Real-time, one-to-many human

tutoring for computer programming. In Proceedings of the 28th Annual
ACM Symposium on User Interface Software & Technology. ACM, 599–

608.

[22] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klem-

mer. 2010. What would other programmers do: suggesting solutions

to error messages. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1019–1028.

[23] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lu-

cas Figueredo, Loris D’Antoni, and Björn Hartmann. 2017. Writing

Reusable Code Feedback at Scale with Mixed-Initiative Program Syn-

thesis. In Proceedings of the Fourth (2017) ACMConference on Learning@
Scale. ACM, 89–98.

[24] Jack Hollingsworth. 1960. Automatic graders for programming classes.

Commun. ACM 3, 10 (1960), 528–529.

[25] John F Hughes. 2018. CS: An Integrated Introduction. http://cs.brown.

edu/courses/csci0170/

[26] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented

Live Programming Environment with Always-On Run-Time Value

Visualizations. In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology (UIST ’17). ACM, 737–745.

[27] Michael Kölling and John Rosenberg. 1996. An object-oriented pro-

gram development environment for the first programming course. In

ACM SIGCSE Bulletin, Vol. 28. ACM, 83–87.

[28] Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn

Papadopoulos, Justin Cheng, Daphne Koller, and Scott R Klemmer. 2013.

Peer and self assessment in massive online classes. ACM Transactions
on Computer-Human Interaction (TOCHI) 20, 6 (2013), 33.

[29] Tia Newhall, Lisa Meeden, Andrew Danner, Ameet Soni, Frances Ruiz,

and Richard Wicentowski. 2014. A support program for introductory

CS courses that improves student performance and retains students

from underrepresented groups. In Proceedings of the 45th ACM SIGCSE.
ACM, 433–438.

[30] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016.

Program synthesis from polymorphic refinement types. ACMSIGPLAN
Notices 51, 6 (2016), 522–538.

[31] Joe Gibbs Politz, Joseph M Collard, Arjun Guha, Kathi Fisler, and

Shriram Krishnamurthi. 2016. The Sweep: Essential Examples for In-

Flow Peer Review. In Proceedings of the 47th ACM Technical Symposium
on Computing Science Education. ACM, 243–248.

[32] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework

for inductive program synthesis. In ACM SIGPLAN Notices, Vol. 50.
ACM, 107–126.

[33] Kelly Rivers and Kenneth R Koedinger. 2014. Automating hint genera-

tion with solution space path construction. In International Conference
on Intelligent Tutoring Systems. Springer, 329–339.

[34] Chung-chieh Shan and Robert Rose. 2019. C211/H211: Introduction to

Computer Science. https://www.cs.indiana.edu/classes/c211/

[35] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013.

Automated feedback generation for introductory programming as-

signments. ACM SIGPLAN Notices 48, 6 (2013), 15–26.
[36] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik,

Vijay Saraswat, and Sanjit Seshia. 2007. Sketching stencils. ACM
SIGPLAN Notices 42, 6 (2007), 167–178.

[37] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodík, and Kemal

Ebcioğlu. 2005. Programming by sketching for bit-streaming programs.

In ACM SIGPLAN Notices, Vol. 40. ACM, 281–294.

23

https://www.microsoft.com/en-us/research/publication/program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-synthesis/
http://cs.brown.edu/courses/csci0170/
http://cs.brown.edu/courses/csci0170/
https://www.cs.indiana.edu/classes/c211/

SPLASH-E ’19, October 25, 2019, Athens, Greece M. Q Feldman, Y. Wang, W. E. Byrd, F. Guimbretière & E. Andersen

[38] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan

Reis, Melina Mongiovi, and Björn Antoni, Loris D’and Hartman. 2017.

TraceDiff: Debugging unexpected code behavior using trace diver-

gences. In Visual Languages and Human-Centric Computing (VL/HCC),
2017 IEEE Symposium on. IEEE.

[39] Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided lan-

guages with rosette. In Proceedings of the 2013 ACM international sym-
posium on New ideas, new paradigms, and reflections on programming

& software. ACM, 135–152.

[40] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Jaakko

Kurhila. 2013. Massive increase in eager TAs: Experiences from ex-

treme apprenticeship-based CS1. In Proceedings of the 18th ACM confer-
ence on Innovation and technology in computer science education. ACM,

123–128.

24

	Abstract
	1 Introduction
	2 TA Feedback in Office Hours
	2.1 Study Design and Mechanics
	2.2 Data Analysis
	2.3 Results

	3 Synthesizing Feedback Automatically
	3.1 Implementation

	4 User Interface
	5 Evaluation
	5.1 Can We Synthesize Feedback?
	5.2 Code Snippet Feedback with TAs
	5.3 YES/NO Feedback with Scheme Novices

	6 Discussion
	7 Related Work
	7.1 Tools for Aiding Student Learning
	7.2 Automated Feedback Techniques

	8 Conclusions
	References

